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Abstract-A numerical technique based on the method of singular surfaces has been developed for the
computation of wave propagation in solids exhibiting rate-independent elastic-plastic or rate-dependent
elastic-viscoplastic behavior. The von Mises yield condition and associated flow rule is taken to represent
the rate-independent behavior, while the Perzyna dynamic overstress model is taken to represent the
rate-dependent behavior. For 1100-0 AI, a good empirical fit with published experimental data was found to
be:

where: J2 is the second invariant of the stress deviator; te( WP) is the static hardening curve; WP is the
plastic work and the parameter (Tcho) =0 (rate-independent model) or (80r t to (70r t MPa·s. In the
numerical technique, the "connection equations" which provide relations between discontinuities in space
and time derivatives lend themselves naturally to finite difference representations. A five-point space-time
grid (center point coincident with the instantaneous location of the singular surface) is sufficient for the
differenced form of the connection equations and suggests a natural marching scheme for the calculation of
all necessary variables at each time step. Supplementing these equations which hold in the interior of the
specimen are interface equations which assure continuity in stress and velocity across boundaries which
separate materials with dissimilar properties. Application of the technique is made to wave propagation in
pure shear for the purpose of comparing numerical predictions with relevant experimental data. The
measurements of Duffy et al. [101 which are obtained from the torsional Kolsky apparatus (one dimensional
torsional shear wave propagation in a thin-walled tube) were compared with predictions obtained numeric­
ally. By using the experimental input pulse history and the constitutive equation reported above, excellent
agreement between the predicted and observed histories of reflected and transmitted pulses was obtained
when the viscoplastic model was used. Poorer agreement was observed when the rate-independent model
(To/yo =0) was used. It is concluded that the Perzyna model gives good results for the behavior of Ilro-<l AI
at high rates of strain.

I. INTRODUCTION

Analysis of inelastic wave propagation has been of great interest in many fields, e.g. nuclear
explosions and structures under dynamic loads. Several techniques have been used to study the
general wave propagation problem. Von Neumann and Richtmyer[l] used finite differenced
hydrodynamic equations with artificial viscosity to study one-dimensional shock wave pro­
pagation. Courant and Friedrichs [2] described the method of characteristics and illustrated
several applications including wave propagation in solids. Later, one- and two-dimensional
wave propagation computer programs using finite difference approximations were developed at
Sandia Laboratories [3,4] to study material behavior.

Singular surface theory has been developed by many workers, e.g. see Hill [5] and Janssen et
al.[6]. The interface conditions using singular surfaces were developed by Jahsman[7].
However, the singular surface approach has never been put to numerical use. The purpose of
this paper is to describe the numerical program based on the singular surface approach and to
apply the program thus developed to the propagation of weak waves through an inelastic
specimen sandwiched between two elastic bars (the Kolsky apparatus).

2. SINGULAR SURFACE RELATIONS

Time and space derivatives Ii and h.i of any function h may be expressed in terms of
derivatives written with respect to local coordinates (€.., n) etched on and normal to the moving

tPresently at: Mechanical Technology Incorporated, 968 Albany-Shaker Road, Latham, NY 12110, U.S.A.
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singular surface I(t) (Fig. I) as follows:

(I)

(2)

The operator 8/8t represents the time derivative recorded by an observer moving with I, and
(ca , cn ) are the components of the velocity of the surface I. The component of the normal to I
in the Xi direction is ni. When I admits discontinuities in the derivatives of h across it ("weak
waves"), eqns (1) and (2), when written immediately ahead of and behind I and then
differenced, reduce to

• [oh][h] = -c -
n on (3)

(4)

Brackets denote the differencing operation described above. Additional details may be found in
Ref. [6]. The simplification results from the fact that h itself is continuous so that [h] = 0,
[8h/8t] =8[h]/8t =0 and [iJh/iJta] = iJ[h]/iJta =O. Retained in this operation is the discontinuity
in the normal derivative of h across I.

Fig. 1. Singular surface and co-ordinates.

3. CONSTITUTIVE EQUATIONS

When the strain rate tensor Eij can be decomposed into its elastic and plastic parts

(5)

the elastic and plastic consititutive equations may be considered separately. For an isotropic
elastic material, the familiar relation

(6)

is used (0 and K are the shear and bulk moduli, respectively). Components of the stress tensor
O'ij and stress deviator tensor Sjj are related through

(7)

and 0' == 0'1ck13 is the mean stress. The Kronecker delta is given by 8 jj•

For an isotropic plastic material, the general form of the consititutive relation

(8)
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is the same for both rate-independent (classical plasticity) and visco-plastic behavior. Here,
WP =: Sil-EN is the plastic power (time rate of change of the plastic work, WP =: f Sjj dEN), and
f =: f(Uii> eli) is the instantaneous yield surface. The relationship between the parameter Aand wP

and f is obtained by multiplying eqn (8) by Sjj and summing:

(9)

Quite different characteristics are exhibited by eqn (8) depending on the form of A(or f). In the
rate-independent theory,

(10)

K is the hardening function and depends solely on plastic work. Differentiation of eqn (10) with
respect to time then provides a linear relationship between WP, Ujj and eN:

(11)

On the other hand, the Perzyna model [8] of viscoplastic behavior introduces the following
expression for A:

A=: 'Yo < ~(F» (12)

where 'Yo is the viscoplastic constant for the material and lfl(F) is a monotonic function of the
dynamic overstress function F, defined as

F =: (f - K)/To (13)

where TO is the initial static yield strength in pure shear (=: K(O), by definition). Thus, the
viscoplastic model permits an instantaneous yield function in excess of the static hardening
function (thus, eqn (13) replaces eqn (10». The brackets on lfl denote

(<I» =: {O, <I> < 0
lfl, <I>~O

(14)

and distinguish loading from unloading provided lfl(O) = 0 since lfl S 0 implies F S 0 because of
the monotonicity of lfl. If eqns (9), (12) and (13) are combined, a new equation for plastic power
replaces eqn (11):

(15)

No longer does plastic power depend linearly on Uij and eli; instead, it depends on the
functions themselves (Ujj and Eli) and on plastic work WP.

If the derivative discontinuity in plastic strain rate across a singular surface I(t) (Section 2)
is of interest, we note from eqn (8) that [efi] t: 0 only if [A]:I' 0 since af/auij depends only on Ujj
and EN. Further, by inspection of eqn (9), this condition can be satisfied only if [WP] :I' 0 when either
(or both) [Ujj] and [efi]:I' 0 (eqn 11); however, for viscoplastic behavior, [WP] =: 0 since the
right-hand side of eqn (15) contains no derivatives. Thus, the viscoplastic model of Perzyna does
not admit the propagation of derivative discontinuities in Eli. Only the elastic part of the strain rate
tensor can be discontinuous across I(t).

As a special case of f(Uii> Eli) and lfl(F), we take

lfl =: F.

(16)

(17)
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Although other choices have also been proposed by Perzyna[8], the equations above represent
the simplest forms which show acceptable agreement with experimental data. The form of f
given in eqn (16) corresponds to the von Mises yield condition, and in one-dimensional problems
the form of 4> given in eqn (17) corresponds to that used by Malvem[9]. Since l/2sijSij = Jz, the
second invariant of the stress deviator tensor, eqns (16) and (17), in conjunction with eqn (15),
reduce to:

(18)

The experimental data for Al 1100-0 as reported in [10-14] were obtained from a number of
tests using the Kolsky apparatus[15] (split Hopkinson pressure bar or torsional thin-walled
tube). The data were reduced to hardening curves T = T(WP

, WP
), using the standard Kolsky

formulas [IS] which provide approximate expressions for average stress and average strain rate
in the specimen. A good fit between the predicted behavior given by eqn (I8) and the
experimental data was obtained by choosing (To/YO) = (70)-1 MPa·s. Comparison between
measurements and predictions is shown in Fig. 2.

60 __ Yo /T:o • 70·' (MPa.sr I

---- Yo ITO' 80

o DUFFY, CAMPBELL a HAWLEY

o NICHOLAS

• CAMPBELL a DOWLING

o GREEN

6 FRANTZ a DUFFY

°0!-----±.8:-------;-lL'::'6----;;2~.4:-----:;3f;.2 ...---;;'4.·0

WP(MPo)

Fig. 2. r - wP curves for AI 1100...0.

4. SHEAR WAVE PROPAGATION

When the material is in a state of simple shear, the general momentum conservation
equations

and the kinematic conditions

E" _! (v' .+ v··) =011 2 1.1 1.1 (20)

(where Vi are the components of particle velocity and p is the constant mass density of the
material) simplify considerably. Letting X3 = z be the (axial) direction of wave propagation, we
can write

0'11 = 0'22 =0'33 =0

0'12 = 0'13 =0

0'23 = T

V2 = v.

(21)

(22)
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The non-zero components of eqns (19) and (20) are then

T' - pv = 0

• I , 0')' -- v =
2

where prime denotes differentiation with respect to z and .y is the total shear strain rate

I
')" = - T

20

(23)

(24)

(25)

(see eqns (5) and (6». Since WP = 2T .yp and W(total power density) = 2T .y, eqns (24) and (25)
become

W= TV'

or, through subtraction,

• I • .f,
W=-rr+ w P

o

I. , .f,p
- rr = TV - Wo

(~6)

(27)

When the material is rate-independent and yields according to the von Mises criterion (see eqns
(10) and (16», f =NJ2 = ITI =K(WP) so that

WP = Tsgn (T) (rate-independent).
dK/dWP'

For the rate-dependent material governed by the Perzyna equation (eqn 18),

(28)

(29)

Equations (28) and (29) are valid when WP ~ 0; otherwise (i.e. Tsgn (T) < 0 or ITI < K), WP == 0
in eqn (27).

Equation (25) brings out clearly the fact that for stresses below the static strength (ITI < K),
the shear stress and strain rates are linearly related. When the shear stress reaches this level,
the plastic power is proportional to the shear stress rate (rate-independent material, eqn (28». If
the material behavior is viscoplastic, the shear stress may exceed the static strength, and the
plastic power is proportional to the dynamic overstress (eqn (29».

5. INTERFACE CONDITIONS

Consider two shear waves, one right traveling (RT) in a medium designated - and the other left
traveling (LT) in medium designated +, which encounter an interface separating the - and +
media. As a result of this encounter, reflected and transmitted waves will be generated at the
interface to insure continuity in stress and velocity across the interface (welded contact). By
analogy to the equations developed early by Jahsman[7], the continuity conditions at the
interface may be written as:

[T]RT- + [T]LT- = [T]RT+ + [T]LT+

[V]RT- + [v]LT- = [V]RT+ + [VhT+.
(30)
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LT_~-~L.--_RTT

RT_ LT+

MATERIAL INTERFACE

Fig. 3. Incident. reftected and transmitted waves at a material interface.

The first and last terms in each of eqns (30) represent the contributions of the right- and
left-traveling waves which are incident on the interface; the remaining terms represent the
contributions of the reflected and transmitted waves, respectively. Figure 3 illustrates the four
waves at the interface.

Discontinuities in T and v are introduced in eqn (30) for compatibility with eqn (23) in
conjunction with eqns (3) and (4). Note that continuity in T and v is automatically assured
through the application of eqns (3) and (4) which depend on the "weak wave" requirement that
[T] = [v] =O.

By virtue of the kinematic equations (eqns (3) and (4», we may write:

[TJRT = +C[T'JRT
LT LT

(31)

where increasing z and t correspond to the direction of a right-traveling wave. The wave speed
C is determined from the consititutive equations, and explicit forms for classical elastic-plastic
and visco-plastic materials are provided in Section 6.

Completing the set of equations necessary for the interface relations are the derivative
discontinuity forms of eqn (23):

[T'lRT= P[VlRT
LT LT

(32)

(33)

The two waves represented by eqn (32) may be added to obtain a discontinuity relation of the
same structure without subscripts.

By regarding the incident waves (denoted by [ JRT- and [ ]LT+) as known quantities, we
may solve for the variables associated with the reflected and transmitted waves ([ JLT- and
[ JRT+) in terms of these known variables by combining eqns (30H32). In terms of [TJRT-' [ThT­
becomes LT+ RT+

[ OJ (pc )+/(pc)- - I [ oJ 2(pc )-/(pc)+ [oJ
T LT- = (pc)+/(pc)_ + 1 T RT- +(pc)_/(pc)+ + 1 T LT+

[ 0] _ 2(pc )+/(pc)- [oJ (pc )-/(pc)+ - 1[0]
T RT+ - (pc )+/(pc)_ + 1 T RT- + (pc )_/(pc)+ + 1 T LT+'

Expressions for [V]LT- are then easily determined from [TJLT- simply by eqns (31) and (32).
. RT+ RT+

(34)

Note that eqn (34) may also be used to replace [TbT- with [V]RT- in eqns (33) if velocity is the
LT+ LT+

more convenient variable to be used with the incident wave. When the material behavior is
elastic, the wave speed c is constant, and the acoustic impedances (pc)::1: are also constant.
Equations (33) may then be recognized as the familiar relations for one-dimensional waves
propagating across an interface at normal incidence.

Because the experimental data used for comparison in Section 7 were obtained from a
torsional Kolsky apparatus in which the specimen dimensions differed from those of the input
and output bars, eqn (30) must be replaced by torque and angular velocity continuity equations.
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[t]RT- + [tlLT- = [t]RT+ + [t]LT+

[W]RT- + [W]LT- = [W]RT+ + [W]LT+. (35)

When the specimen and bars are both thin-walled tubes, torque T and angular velocity ware
related to shear stress l' and particle velocity by

T=rAT

w = vir (36)

where A is the cross-sectional area of the tube and r is the mean radius. Combining eqns (35)
and (36) with eqns (31) and (32) leads to a set of equations to replace eqn (33).

o _ (pc)+/(pc)_-(rA)_/(r2A)+ 0 (rA)+ 2(pc)_/(pc)+ 0

[TlLT- - (pc)+/(pc)_ +(r2A)+/(r2A)_ [T]RT- +(rA)_ (pc)_/(pc)+ +(r2A)+/(r2A)_ [T]LT+

[
0 (rA)_ 2(pc)+/(pc)_ [0] (pc)_/(pc)+-(rA)+/(rA)_ 0]
l' ]RT+ = (rA)+ (pc)+/(pc)_ +(?A)_/(?A)+ l' RT- + (pc)_/(pc)+ + (r2A)+/(?A)_ [1' LT+' (37)

Imposing dimensional continuity across the interface eqn (37) reduces to eqn (33).
For numerical stability of the calculations for the rate-independent solid, it was found

necessary to perform the differencing in eqns (34) and (37) on the product of the acoustic
impedance pc with the derivative discontinuity rather than on the latter factor alone. In the limit
(.:1z -+ O,.:1t -+ 0) there will be no difference between [pcti] and pc[ ti] since p and c are continuous
Clearly, a numerical smoothing was achieved through the use of the former expression, and it was
retained for this reason.

6. NUMERICAL COMPUTATIONS

The computational scheme presented here depends on the ability to write derivative
discontinuity ("connection") equations of the form

[A] = [BC] (38)

where A and C may be any of the variables v, 1', wP and W P
, and B is a continuous function

of these same variables. Identifying the instantaneous site of the singular surface by (z*, t*),
we represent the temporal and spatial derivative discontinuities by

[A] == A(z*, t* + .:1t+) - A(z*, t*) A(z*, t*) - A(z*, t* - .:11-)
.:1t+ .:11-

[BC'] == ~ {B(z* + .:1z+, t*) +B(z*, t*)} C(z* +.:1z+~;: - C(z*, t*)

- ~ {B(z*, t*) +B(z* - .:1z-, t*)} C(z*, t*) - f;~*-.:1z_, t*). (39)

(z~t·)

.6t

(z~t~.6L)

.6z+ .1
• z

1"__.6_Z _

Fig. 4. Schematic of grid used with eqns (38) and (39). (Variables are known at all points except
z*. t* +~t+.).
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Thus, if the spatial variation of all variables is known for all times up through t*, then eqns (38)

and (39) will enable the calculation of those same variables through the new time increment I1t+.
(These equations are applicable only to interior points; i.e. points away from interfaces. Interface
equations will be presented in the last part of this section.)

A visualization of the space-time grid used in the calculation of A(z*, t* + I1t+) is shown in Fig.

5. A close tie between numerical approximations for [A] and [C] and for Aand C" may be noted
noted since

A== 1 {A(Z*, t* + I1t+) - A(z*, t*) A(z*, t*) - A(z*, t* -ilL)}

~ (I1t+ +ilL) I1t+ ilL

BC" == 1 I G{B(z* + I1z+, t*) +B(z*, t*)} C(z* +I1Z+,;;~ - C(z*, t*)
"2 (l1z+ + I1z_)

1{B(z*, t*) - B(z* -l1z_, t*)} C(Z*, t*) - f;~* -l1z_, t*)].

Thus, [A] = [BC'] in differenced form is indistinguishable from A= mc" in differenced form
when I is interpreted as di/dt, some average speed. For the special case of C = A, the latter
equation has the form of a wave equation with IB representing c2, square of the wave speed.

It is convenient to let v represent the generic variable C in the equations to be presented
explicitly. Then according to the kinematic equations, eqns (3) and (4), we can write a relation
of the form of eqn (38) for the right- and left-traveling waves as

[V]RT= +:C[V'lRT
LT LT

(40)

where the wave speed c is determined from the roots of the connection eqns (38). For ,the special
classes of materials considered here, it may be shown that

c = V(l-P)c2

P = {(1+ ~ dC:;Prl

,

o ,

(rate-independent behavior), yield governed by the von Mises criterion[l6], see eqn (28) or

(41)

(42)

(viscoplastic behavior, Perzyna model). Equation (42) follows from the fact that [IG} = 0 (see
discussion preceding eqn (16» and thus, that all derivative discontinuities propagate at the
elastic shear wave speed C2' Although eqn (40) treats right- and left-traveling waves in­
dividually, the total contribution is merely the sum of the individual effects

[v) = [V]RT + [VkT

[v'] = [V']RT + [v']LT. (43)

It is the latter form, eqn (43), which is particularly useful for the computation of the other
variables, although retention of the individual wave effects is necessary in dealing with the
interface conditions.

Calculation of the remaining variables begins with a test of sgn (WP). If 11'1 < 1(, WP =0 and
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eqn (27), written in derivative discontinuity form, is used to find T(Z*, t* +4t+):

[oF] =G[v'](ITI < K, WP =0). (44)

Since WP =0, WP(z*, t* + 4t+) = WP(z*, t*) (no variation in WP).
As the yield surface is broached, ITI ~ K and eqn (44) can no longer be used. Instead, the

appropriate consititutive equation is put in the form represented by eqn (38). For the rate­
independent material obeying the von Mises yield condition, eqn (27) in conjunction with eqn
(28) gives

.fTp _ { (KIG) sgn (T) }G['] (I 1- .fTp 0)
[w ] - 1+ (KIG)(dKldWP) v T - K, W > . (45)

Once WP(z*, t* + 4t+) is obtained, T(Z*, t* +4t+) is found from the constitutive equation
ITI = K(WP).

When the material is viscoplastic [WP] = 0, as discussed in Section 3. Since the equation
requires a constant plastic work rate across the singular surface, it is replaced by a two-term
Taylor's series expansion of WP(z*, t*) to provide WP(z*, t* +4t+)

(46)

Since the constitutive equation (eqn (29» requires information on both WP and WP to enable
the determination of T(Z*, t* +4t+), an additional equation is needed. Accordingly, eqn (29) is
differentiated with respect to time and used with eqn (28) to obtain

A counterpart of eqn (46) is then written for WP(z*, t* +4t+):

WP(z*, t*+4t+) = WP(z*, t*)+ WP(z*, t*)4t+. (48)

Equations (46), (48) and (29) provide enough information to solve for T(Z*, t* +4t+).
In order to calculate the reflected and transmitted waves at the left and right interfaces, the

centered difference of eqn (23) is used at time (t* +4t+/2) and half of the spatial step away
from the interface inside- the specimen. The space-time grid used is shown in Fig. 5. Thus, the
centered difference representation of eqn (23) is

L J ~ (v(z*, t* +4t+) + v(z* +4z+, t* +4t+»}

4t+ 1- ~ (v(z*, t*) + v(z* +4z+, t*»

= _1_' { ~ ~T(Z* +4z, t* +4t+) + T(Z* +4z+, t*» }. (49)

4z+ - 2(T(Z*, t* +4t+) +T(Z*, t*»

T ELASTIC BAR

MATERIAL
z*+li.z+ INTERFACEZ*

I
I
I-----,----
I
I

t*--+-----i..I--...,:t'

SPECIMEN

Fig. 5. Schematic of grid used with eqn (49).
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Since the time derivative discontinuities at the interface are given by

[f] = [flRT-+[f]LT­

[v] = [V]RT- + [V]LT-. (50)

the reflected and transmitted stress and velocity waves are calculated by means of eqns (34) and
(37) in conjunction with eqns (49) and (50).

To minimize computation time, a coarse spatial mesh was selected; the specimen length h
was subdivided into five equal parts (.1Z+ = .1z_ = hIS). For stability in the numerical program,
the time increment should satisfy

(51)

where c is given by the appropriate form of eqn (40). The maximum value of .1t was chosen to
minimize run times. For the rate-independent material, c decreases from C2 as plastic work
increases.

The flow chart for the numerical program which implements the equations in this section is
shown in Fig. 6. For listing and more details of the program, the reader is referred to Ref. [17].

CALCULATE v AND T AT (34)
RIGHT INTERFACE (37)

PRINT PROFILE OF v,
T, wP AND wP

(40)­
(46)

EQ.g
READ CONSTITUTIVE
EQUATION

CALCULATE v. T, wP
r----L----,L...-.-IAND wP AT tIt+ at.;

ADVANCE v, T AT
INTERFACE

CALCULATE v AND T AT 01

L....:.-,-,;"";,,-"'---,,.---...,LEFT INTERFACE

Fig. 6. Flow chart of wave program.

7. RESULTS

The experimental data of Duffy et al. [10] were used as a basis of comparison with the
numerical program described in the previous sections. As input condition for the program, the
incident stress history by Duffy was used; the predicted behavior of the reflected and
transmitted stress history was then compared with the data reported by Duffy. Results are
shown in Figs. 7 and 8, where the solid line represents the experimental data and the dashed and
dot-dashed lines represent the predictions based on the viscoplastic model and the rate­
independent plastic model, respectively. The value of the viscoplastic parameter TO!'ro used in
the computation to give the best fit is (80)-1 MPa·s. While this value is approximately 15%
smaller than that predicted by the Kolsky data reduction formulas and reported in Section 3, it
still provides rate-dependent hardening curves which lie within the experimental scatter
(dashed lines, Fig. 2). For both the rate-independent and rate-dependent computations, the
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Fig. 7. Fig. 8.

Fig. 7. Transmitted stress pulse from Duffy, Campbell and Hawley[IO].

Fig. 8. Reft~cted stress pulse from Duffy, Campbell and Hawley [10].

elastic properties of the input and output bars were set at G = 25.8 GPa and C2 = 3.10 mm(,", srI.
Specimen length was h = 2.71 mm.

Agreement between predictions based on the rate-independent model and the measured data
is rather poor. Although this agreement could be improved somewhat by replacing the WP = 0
hardening curve with one for WP > 0 (40 GPa's- l

, for example), the amplitude rather than the
shape of the predicted stress history would be influenced by such a change. As a result, the
early time agreement would be achieved at the expense of agreement at the later times. Thus it
appears that even an approximate hardening curve for the rate-independent model cannot
achieve the overall agreement with the measured data of the type exhibited by the viscoplastic
model.

Information on the plastic work accumulation within the specimen, WP(t), is shown in Fig. 9
for both plastic and viscoplastic models. Although the shape of the curves is different for the

--ELASTIC-PLASTIC

---- ELASTIC-VISCOPLASTIC,
YO/TO' 80(MPa.s )-1

2

o
n.
2

I~

o0~--::::""-='=--'--40-:7--..L---:6~O-....J

t (fLS)

Fig. 9. WP(t) history in elastic-plastic and elastic-viscoplastic specimens.

two models, the order of magnitude is the same. Hence it is concluded that the overall amount
of energy dissipated in the specimen is approximately the same, regardless of the mechanism
(irreversible slip along preferred glide planes or viscous dissipation). Finally, in Fig. 10 stress
profiles across the specimen are shown at different times throughout the passage of the pulse.
At early times, some stress nonuniformity is evident; however, for times later than 10 ,",S, the
profile is almost flat. After 60 ,",S, unloading begins as seen by the reduced amplitude of stress at
t = 70 ,",so

SS Vol. 14, No. l-D
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Fig. 10. Stress-profile in the specimen using elastic-viscoplastic program.

8. CONCLUSIONS

A computer program based on the method of singular surfaces has proved to be satisfactory
for the calculation of weak wave propagation in elastic-plastic and elastic-viscoplastic solid­
specimens sandwiched between two elastic bars (torsional Kolsky apparatus). It is found that a
detailed analysis of propagation inside the specimen is necessary for accurate prediction of the
material behavior because of departure from the stress-uniformity assumption used in arriving
at the Kolsky formula for data reduction. Complete stress history of both reflected and
transmitted pulses are needed. The rate-dependent constitutive relation gives excellent
agreement between predicted histories and experimental data for Al 1100-0. Therefore, it is
believed that AI 1100-0 is rate-dependent and the material behavior in pure shear can be well
represented by Perzyna's elastic-viscoplastic model with the viscosity constant, ('Yo/To),
obtained by empirical fitting as 80 (MPa·sr t
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